Системная инженерия

Наиболее активно после биологии и менеджмента системный подход разрабатывался в системной инженерии(systems engineering)В русскоязычных переводах инженерной литературы менеджеры слово engineering не удосуживаются перевести как «инженерия», так и оставляют «инжинирингом». Перевод «системный инжиниринг» уже побеждает — это легко отследить по результатам сравнения в интернет-поисковых системах. Можно считать, что «системная инженерия» и «системный инжиниринг» синонимы, но есть маленькая проблема: в России почему-то в тех местах, где занимаются инженерным менеджментом, а не инженерией, называют его тоже «системным инжинирингом» — хотя при этом никаких инженерных (т.е. по изменению конструкции и характеристик системы) решений не принимается, речь идёт только об организации работ по созданию системы. Так что будем считать «инженерию» и «инжиниринг» синонимами, но в случае «инжиниринга» проверять на всякий случай, не менеджмент ли имеется в виду вместо инженерной работы (то есть занимаются ли в ходе «инжиниринга» изменением конструкции системы, или это делают в ходе какой-то другой «инженерии»).

Самое современное и одновременно устаревшее определение системной инженерии дано в Guide to the Systems Engineering Body of Knowledge (руководство по корпусу знаний системной инженерии). Короткое определение: системная инженерия — это междисциплинарный подход и способы обеспечения воплощения успешной системы (Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems). В этом определении можно подчеркнуть:

  • Успешные системы — это то, что создаёт системная инженерия. Слово «успешные» (successful) тут крайне важно, и имеет терминологическое специальное значение. Оно означает, что результирующая система проекта учитывает ролевые потребности затрагивающих систему и её проект людей, равно как и потребности затрагиваемых системой и её проектом людей. Если предпочтения всех этих людей в ролях заказчиков, плательщиков, пользователей и других учтены, то это и будет «успех». Тем самым успех тут определяется не бытовым, или финансовым, или экологическим или ещё каким образом, а именно через приемлемость результата проекта для множества людей-в-ролях, успех определяется как «договорились со всеми, все довольны».
  • Слово «системы» используется в очень специальном значении: это «системы» из системного подхода, термин. Для системной инженерии слово «система» примерно то же, что «физическое тело» для ньютоновской механики — если вы сказали про компьютер «физическое тело», то это автоматически влечёт за собой разговор про массу, потенциальную энергию, модуль упругости, температуру и т.д. Если вы сказали «система» про компьютер, то это автоматически влечёт за собой разговор про системные уровни, роли и их предпочтения в интересах, требования и архитектуру, жизненный цикл и его обеспечение, и т.д. Все эти понятия будут подробно рассмотрены в нашей книге.
  • Междисциплинарный подход — системная инженерия претендует на то, что она работает со всеми остальными предметными инженерными специальностями (впрочем, не только инженерными). Но это уже устаревшая часть классического определения, более современные определения используют другое слово: трансдисциплинарность (transdisciplinary), что означает внешнесть, «потустороннесть» по отношению к самым разным другим дисциплинам, а не нахождение в одном ряду, «между» другими дисциплинами. Трансдисциплинарность — это очень сильное заявление, оно означает, что системная инженерия входит во множество самых разных других прикладных дисциплин, она не «равнопредставлена» с ними, а используется прямо внутри мышления этих дисциплин. Системная инженерия в силу своей трансдисциплинарности может в одну упряжку впрячь коня и трепетную лань (например, людей в ролях инженеров-механиков, баллистиков, криогенщиков, психологов, медиков, астрономов, программистов и т.д. в проектах пилотируемой космонавтики, которые с использованием системноинженерных понятий будут координировать свои работы).
  • Слово «воплощение» (realization, «перевод в реальность») означает буквально это: создание материальной (физической, т.е. из вещества и полей) успешной системы. Речь идёт об изменении физического мира, дело не ограничивается только проектированием и другой информационной работой, проект выходит в физическую реальность и меняет её.

По-английски «системная инженерия» — systems engineering, хотя более ранние написания были как system engineering. Правильная интерпретация (и правильный перевод) — именно «системная» (подразумевающая использование системного подхода) инженерия, а не инженерия систем (engineering of systems) — когда любой «объект» обзывается «системой», но не используется системный подход во всей его полноте. Под инженерией систем (например, control systems engineering, manufacturing systems engineering) понимаются обычные инженерные специальности, там легко выкинуть слово «система», которое лишь обозначает некий «научный лоск». Предметные/прикладные (не системные) инженеры легко любой объект называют «системой», не задумываясь об осознанном использовании при этом системного мышления, не используя системный подход. В самом лучшем случае про систему предметные инженеры скажут, что «она состоит из взаимодействующих частей» — на этом обычно разговор про «систему» и «системность» заканчивается, он не длится больше двадцати секунд. Занимающиеся «инженерией систем» очень полезны и нужны, но они не системные инженеры.

А вот из системной инженерии квалификатор «системный» без изменения смысла понятия выкинуть нельзя. Неформально определяемая системная инженерия — это инженерия с системным мышлением в голове (а не любая инженерия, занимающаяся объектами, торжественно поименованными системами просто для добавления указания о сложности этих объектов и научности в их описании).

Целостность (полнота охвата всех частей целевой системы согласованным их целым, многоуровневое разбиение на части-целые), трансдисциплинарность (полнота охвата самых разных дисциплин системной инженерией) — это ключевое, что отличает системную инженерию от всех остальных инженерных дисциплин. Роль системного инженера отличают по тому, что человек в этой роли занимается всей системой в целом в разбиении на много уровней вниз и вверх от границы системы, а не только отдельными частями системы или только отдельными инженерными (теплотехника, электротехника) или менеджерскими (операционный менеджмент, лидерство) прикладными дисциплинами.

Более длинное определение системной инженерии включает ещё одну фразу: «Она фокусируется на целостном и одновременном/параллельном понимании потребностей проектных ролей; исследовании возможностей; документировании требований; и синтезировании, проверке, приёмке и постепенном появлении инженерных решений, в то время как в расчёт принимается полная проблема, от исследования концепции системы до вывода системы из эксплуатации» (Вторая фраза в определении системной инженерии из SEBoK: It focuses on holistically and concurrently understanding stakeholder needs; exploring opportunities; documenting requirements; and synthesizing, verifying, validating, and evolving solutions while considering the complete problem, from system concept exploration through system disposal.)

Системная инженерия поначалу применялась главным образом для борьбы со сложностью аэрокосмических проектов, и она была там крайне эффективна. Для того, чтобы маленький проект уложился в срок и бюджет, нужно было на системную инженерию потратить 5% проекта, что предотвращало возможный рост затрат проекта на 18%. Для средних проектов на системную инженерию оптимально тратить было уже 20% усилий всего проекта, но если не тратить — возможный рост затрат проекта был бы 38%. Для крупных и очень крупных проектов оптимальные затраты на системную инженерию оказались 33% и 37% соответственно, и это для того, чтобы предотвратить возможный рост затрат проекта на всяческие переделки плохо продуманного 63% и 92% соответственно.

Как и можно ожидать, системная инженерия в простых небольших проектах почти не даёт эффекта (там всё хорошо продумывается «в уме» и не требует особых мыслительных практик), но оказывается ключевой в сложных и очень крупных проектах: без системного мышления в них допускаются ошибки, которые потом оказывается очень дорого переделывать. Без системного мышления сталкиваться со сложностью выйдет чуть ли не вдвое дороже за счёт дополнительной работы по переделкам допущенных ошибок.

Люди, которые выполняли в проектах роль системных инженеров, не прикладывали положения системного подхода к своей основной инженерной работе, а наоборот, к мыслительной базе системного мышления адаптировали все свои инженерные знания. Системные инженеры строили своё инженерное мышление на основе системного мышления.

В результате системным инженерам удалось выполнить сверхсложные проекты — например, они в 1969-1972 году отправили на орбиту вокруг Луны 24 космонавта, а по самой Луне пешком ходили 12 человек. Да что там пешком, рекорд скорости по Луне на луномобиле составил 18.6 км/час, при этом люди уезжали от ракеты на Луне на расстояние больше 7 километров! Достижения современной космонавтики, думаю, тоже не нужно рекламировать, даже с учётом того, что инженерное развитие в этой области было существенно искажено военными проектами, а инженеры развращены государственным финансированием. Но сложность космических проектов не позволяла добиваться успехов «обычной инженерией». Так, советская школа инженерии не смогла повторить достижений лунной программы, не смогла повторить многих и многих достижений планетарных программ, которых достигли в NASA. Конечно, у отечественной космонавтики есть и отдельные достижения (например, удачные ракетные двигатели), но при росте сложности проекта в целом неудачи начинают резко перевешивать достижения — типа четырёх неудач лунного старта Н-1.

Тут нужно отдельно оговорить, что всё это были достижения ещё первого поколения системного мышления, когда не обращали внимания на успешность системы как удовлетворения интересов самых разных проектных ролей. Космические программы имели астрономические бюджеты, и критиковались за то, что вместо помощи больным и голодным людям деньги выкидывались на удовлетворение каких-то политических амбиций (это было верно и для США, и для СССР, поэтому лунные старты и были прекращены на десятки лет!). В книге будет подраздел о том, почему государственные проекты не могут быть успешными по критериям самой системной инженерии.

Тем не менее, технический успех (работоспособность сложных технических систем, если не обращать внимания на цену, заплаченную налогоплательщиками за эту работоспособность) в аэрокосмических программах США был поразительным.

Метод работы западных аэрокосмических инженеров — именно системная инженерия, т.е. инженерия с использованием системного мышления. Системные инженеры (и отчасти программные инженеры) уточняли и развивали положения системного подхода, проверяя их действенность в сложных проектах, а самое важное из этих уточнённых и обновлённых положений попало в международные инженерные стандарты.

По иронии судьбы, стагнация системной инженерии от государственных и военных проектов наблюдается и прямо сейчас. Так, на международном симпозиуме INCOSE в 2020 году собралось много системных инженеров из военных и государственных проектов, и демонстрировались умеренные инженерные достижения. Но не было никаких докладов от SpaceX, хотя фронтир системной инженерии демонстрирует сегодня именно эта фирма. Системная инженерия перестала развиваться в ассоциации из по факту чиновников-инженеров, её развитие переместилось в реальные коммерческие проекты. Системное мышление развивается в таких проектах, как становящиеся автономными автомобили Tesla, инфраструктура быстрого космического интернета StarLink от SpaceX, суперкомпьютеры для искусственного интеллекта от NVIDIA и Google.

В отличие от многих и многих вариантов системного подхода, «системноинженерный вариант» в начале 21 века был проверен тысячами сверхсложных проектов, обсуждён десятками тысяч инженеров, унифицирован и доказал свою эффективность на деле. Он не имеет авторства (ибо в его создании участвовало множество людей), он не является «оригинальным исследованием», он не изобретает велосипеды в части самого системного подхода. Он просто отражает всё самое важное, что было накоплено системным движением за десятки лет и оказалось практичным и относительно легко применяемым на практике десятками тысяч людей.

Подробней про системную инженерию и её вариант системноинженерного мышления можно прочесть в учебнике «Системноинженерное мышление» 2015 года. Наша же книга посвящена версии системного мышления, универсальной для инженеров, менеджеров, предпринимателей, людей творческих профессий и остальных сфер деятельности.

Вдобавок к инженерам «железных» и программных систем, системным подходом и его стандартами заинтересовались инженеры и архитекторы предприятий (enterprise engineers и enterprise architects), они начали адаптировать применение системного подхода к задачам менеджмента, а потом и к задачам предпринимательства.

Решающим в выборе для нашего учебника именно этого (из стандартов системной инженерии) варианта системного подхода является его ориентация на человеческую деятельность, на изменение окружающего мира, а не просто на «понимание», «исследования», «анализ», «науку». Анализ-понимание полезен только в контексте последующего синтеза-созидания чего-то в нашем физическом мире, в контексте изменяющей физический мир к лучшему деятельности по созданию новых и модернизации уже имеющихся систем.

Наш учебник представляет тот вариант системного мышления, который изначально ориентирован на создание успешных систем (помним о специальном смысле слова «успешные»!) — будь это «железные» системы (самолёт, атомная электростанция), программные системы, биологические системы (клетки и организмы — ими занимается системная биология, генная инженерия), системы-предприятия (организационные системы), или даже такие нестандартные системы как танец или марафонский бег.

Источник: учебник А.Левенчука «Системное мышление 2020»